当前位置:华创抄板公司 >> 技术中心 >> 芯片解密技术 >> 深圳pcb抄板气动人工肌肉的双足机器人关节设计

深圳pcb抄板气动人工肌肉的双足机器人关节设计

    气压驱动子系统由气源、压力伺服比例阀、McKibben气动人工肌肉及机构部分组成。由气源提供压力为0.6~0.9MPa的压缩气体。压缩气体由导管经过伺服比例阀送人气动人工肌肉中。每条肌肉均与一伺服比例阀相连并有一出气阀门和一进气阀门。通过控制伺服比例阀上所加的电压即可控制肌肉中的气体压力。加压后的气动肌肉输出收缩张力并驱动机构部分的关节转动,因此通过对肌肉压力的控制即可达到轨迹跟踪所需的关节力矩。本系统中采用的McKibben气动人工肌肉为FESTO公司的MAS-20-300N型,其工作压力范围为0~O.6MPa,最大工作频率为3Hz,最大收缩为肌肉长度的25%,O.6MPa时理论作用力为300N,重复精度小于1%。压力伺服比例阀接受控制端传入的电压输入并通过调节充气阀门和进气阀门控制肌肉内气压。本系统采用了SMC公司的丌ITVOO5C-2ML型压力比例阀。此阀的输入范围为0~5VDC,输出为0.001“0.9MPa之间的压力。
    1.2.2 传感器子系统
    传感器子系统由力传感器和直线位移传感器构成。通过直线位移传感器可以测量出肌肉的收缩量,根据此收缩量可以利用肌肉和关节模型进行轨迹跟踪控制。力传感器测量肌肉拉力,根据此拉力与关节力矩的线性关系可以计算出关节力矩,从而完成关节的伺服闭环控制。pcb抄板本系统中采用的力传感器是航天科技集团公司7Ol所的BK-2F型高精度S形测力/称重传感器。其测量作用力的最大范围可达80kg,精度为0.05%。输出经过TS-2型放大器放大后,输出电压范围为-5V~+5V。直线位移传感器采用了WDL型直滑式导电塑料电位计。
    双足机器人相比于一般的移动机器人在非结构化环境中具有更好的移动能力,因而受到研究者的广泛关注。控制机器人获得快速的行走速度以及实现跑动步态仍然是双足机器人领域中具有挑战性的问题之一。机器人快速行走或跑动时,摆动脚在落地的瞬间会产生一个较大的冲击力,此力使落地脚反弹或使零力矩点(zeromoment point)产生较大跳变,从而造成机器人稳定裕度降低和跌倒。这种现象被称为冲击效应,它是制约双足机器人提高步行速度和跑步的因素。
    气动人工肌肉是近年来发展起来的一种新型的驱动器,McKibben型气动肌肉是其中应用最为广泛的一种。它具有柔顺、功率/质量比大、在力,长度特性上与人类肌肉类似等优点。由于其具有柔顺性可控的优点,应用气动人工肌肉作为驱动器可以有效地解决双足机器人的落地脚冲击问题。因此,将气动人工肌肉作为双足机器人的驱动器具有良好的前景。但是,人工肌肉具有高度非线性的特点。并伴随有迟滞现象,使得对其建攘和控制困难。目前,基于气动人工肌肉的双足机器人的研究刚刚起步,只有少数几个双足机器人项目对此进行了研究。本文利用MeKibben气动人工肌肉搭建了类似生物颉颃关节的单自由度人工关节。此系统的硬件部分包括气压驱动子系统、传感器子系统和控制子系统。在此硬件系统上构建了软件系统,实现了对此人工关节轨迹的跟踪控制。基于本文的工作可以进一步研究和解决气动人工肌肉及关节的建模和控制问题,为设计和搭建基于气动人工肌肉驱动器的双足机器人打下基础。

微信扫描二维码咨询